About Course
Machine Learning Certification Course
Course Content
Lesson1. Course Introduction
-
Course Introduction
00:00 -
Accessing Practice Labs
00:00
Lesson 2. Introduction to AI and Machine Learning
-
Learning Objectives
00:00 -
Emergence of Artificial Intelligence
00:00 -
Artificial Intelligence in Practice
00:00 -
Sci-Fi Movies with the Concept of AI
00:00 -
Recommender Systems
00:00 -
Relationship between Artificial Intelligence, Machine Learning, and Data Science: Part A
00:00 -
Relationship between Artificial Intelligence, Machine Learning, and Data Science: Part B
00:00 -
Definition and Features of Machine Learning
00:00 -
Machine Learning Approaches
00:00 -
Machine Learning Techniques
00:00 -
Applications of Machine Learning: Part A
00:00 -
Applications of Machine Learning: Part B
00:00 -
Key Takeaways
00:00 -
Knowledge Check
00:00
Lesson 3. Data Preprocessing
-
Learning Objectives
00:00 -
Data Exploration Loading Files: Part A
00:00 -
Data Exploration Loading Files: Part B
00:00 -
Demo: Importing and Storing Data
00:00 -
Practice: Automobile Data Exploration – A
00:00 -
Data Exploration Techniques: Part A
00:00 -
Data Exploration Techniques: Part B
00:00 -
Seaborn
00:00 -
Demo: Correlation Analysis
00:00 -
Practice: Automobile Data Exploration – B
00:00 -
Data Wrangling
00:00 -
Missing Values in a Dataset
00:00 -
Outlier Values in a Dataset
00:00 -
Demo: Outlier and Missing Value Treatment
00:00 -
Practice: Data Exploration – C
00:00 -
Data Manipulation
00:00 -
Functionalities of Data Object in Python: Part A
00:00 -
Functionalities of Data Object in Python: Part B
00:00 -
Different Types of Joins
00:00 -
Typecasting
00:00 -
Demo: Labor Hours Comparison
00:00 -
Practice: Data Manipulation
00:00 -
Key Takeaways
00:00 -
Knowledge Check
00:00
Lesson 4. Supervised Learning
-
Learning Objectives
00:00 -
Supervised Learning
00:00 -
Supervised Learning- Real-Life Scenario
00:00 -
Understanding the Algorithm
00:00 -
Supervised Learning Flow
00:00 -
Types of Supervised Learning: Part A
00:00 -
Types of Supervised Learning: Part B
00:00 -
Types of Classification Algorithms
00:00 -
Types of Regression Algorithms: Part A
00:00 -
Regression Use Case
00:00 -
Accuracy Metrics
00:00 -
Cost Function
00:00 -
Evaluating Coefficients
00:00 -
Demo: Linear Regression
00:00 -
Practice: Boston Homes – A
00:00 -
Challenges in Prediction
00:00 -
Types of Regression Algorithms: Part B
00:00 -
Demo: Bigmart
00:00 -
Practice: Boston Homes – B
00:00 -
Logistic Regression: Part A
00:00 -
Logistic Regression: Part B
00:00 -
Sigmoid Probability
00:00 -
Accuracy Matrix
00:00 -
Demo: Survival of Titanic Passengers
00:00 -
Practice: Iris Species
00:00 -
Key Takeaways
00:00 -
Knowledge check
00:00 -
Health Insurance Cost
00:00
Lesson 5. Feature Engineering
-
Learning Objectives
00:00 -
Feature Selection
00:00 -
Regression
00:00 -
Factor Analysis
00:00 -
Factor Analysis Process
00:00 -
Principal Component Analysis (PCA)
00:00 -
First Principal Component
00:00 -
Eigenvalues and PCA
00:00 -
Demo: Feature Reduction
00:00 -
Practice: PCA Transformation
00:00 -
Linear Discriminant Analysis
00:00 -
Maximum Separable Line
00:00 -
Find Maximum Separable Line
00:00 -
Demo: Labeled Feature Reduction
00:00 -
Practice: LDA Transformation
00:00 -
Key Takeaways
00:00 -
Knowledge Check
00:00 -
Knowledge Check
00:00
Lesson 6. Supervised Learning Classification
-
Learning Objectives
00:00 -
Overview of Classification
00:00 -
Classification: A Supervised Learning Algorithm
00:00 -
Use Cases of Classification
00:00 -
Classification Algorithms
00:00 -
Decision Tree Classifier
00:00 -
Decision Tree Examples
00:00 -
Decision Tree Formation
00:00 -
Choosing the Classifier
00:00 -
Overfitting of Decision Trees
00:00 -
Random Forest Classifier- Bagging and Bootstrapping
00:00 -
Decision Tree and Random Forest Classifier
00:00 -
Performance Measures: Confusion Matrix
00:00 -
Performance Measures: Cost Matrix
00:00 -
Demo: Horse Survival
00:00 -
Practice: Loan Risk Analysis
00:00 -
Naive Bayes Classifier
00:00 -
Steps to Calculate Posterior Probability: Part A
00:00 -
Steps to Calculate Posterior Probability: Part B
00:00 -
Support Vector Machines : Linear Separability
00:00 -
Support Vector Machines : Classification Margin
00:00 -
Linear SVM : Mathematical Representation
00:00 -
Non-linear SVMs
00:00 -
The Kernel Trick
00:00 -
Demo: Voice Classification
00:00 -
Practice: College Classification
00:00 -
Key Takeaways
00:00 -
Knowledge Check
00:00 -
Classify Kinematic Data
00:00
Lesson 7. Recommender Systems
-
Learning Objectives
00:00 -
Overview
00:00 -
Example and Applications of Unsupervised Learning
00:00 -
Clustering
00:00 -
Hierarchical Clustering
00:00 -
Hierarchical Clustering Example
00:00 -
Demo: Clustering Animals
00:00 -
Practice: Customer Segmentation
00:00 -
K-means Clustering
00:00 -
Optimal Number of Clusters
00:00 -
Demo: Cluster Based Incentivization
00:00 -
Practice: Image Segmentation
00:00 -
Key Takeaways
00:00 -
Knowledge Check
00:00 -
Clustering Image Data
00:00
Lesson 8. Time series Modelling
-
Learning Objectives
00:00 -
Overview of Time Series Modeling
00:00 -
Time Series Pattern Types: Part A
00:00 -
Time Series Pattern Types: Part B
00:00 -
White Noise
00:00 -
Stationarity
00:00 -
Removal of Non-Stationarity
00:00 -
Demo: Air Passengers – A
00:00 -
Practice: Beer Production – A
00:00 -
Time Series Models: Part A
00:00 -
Time Series Models: Part B
00:00 -
Time Series Models: Part C
00:00 -
Steps in Time Series Forecasting
00:00 -
Demo: Air Passengers – B
00:00 -
Practice: Beer Production – B
00:00 -
Key Takeaways
00:00 -
Knowledge check
00:00 -
IMF Commodity Price Forecast
00:00
Lesson 9. Ensemble Learning
-
Ensemble Learning
00:00 -
Overview
00:00 -
Ensemble Learning Methods: Part A
00:00 -
Ensemble Learning Methods: Part B
00:00 -
Working of AdaBoost
00:00 -
AdaBoost Algorithm and Flowchart
00:00 -
Gradient Boosting
00:00 -
XGBoost
00:00 -
XGBoost Parameters: Part A
00:00 -
XGBoost Parameters: Part B
00:00 -
Demo: Pima Indians Diabetes
00:00 -
Practice: Linearly Separable Species
00:00 -
Model Selection
00:00 -
Common Splitting Strategies
00:00 -
Demo: Cross Validation
00:00 -
Practice: Model Selection
00:00 -
Key Takeaways
00:00 -
Knowledge Check
00:00 -
Tuning Classifier Model with XGBoost
00:00
Lesson 10. Recommender Systems
-
Learning Objectives
00:00 -
Introduction
00:00 -
Purposes of Recommender Systems
00:00 -
Paradigms of Recommender Systems
00:00 -
Collaborative Filtering: Part A
00:00 -
Collaborative Filtering: Part B
00:00 -
Association Rule Mining
00:00 -
Association Rule Mining: Market Basket Analysis
00:00 -
Association Rule Generation: Apriori Algorithm
00:00 -
Apriori Algorithm Example: Part A
00:00 -
Apriori Algorithm Example: Part B
00:00 -
Apriori Algorithm: Rule Selection
00:00 -
Demo: User-Movie Recommendation Model
00:00 -
Practice: Movie-Movie recommendation
00:00 -
Key Takeaways
00:00 -
Knowledge Check
00:00 -
Book Rental Recommendation
00:00
Lesson 11. Text Mining
-
Learning Objectives
00:00 -
Overview of Text Mining
00:00 -
Significance of Text Mining
00:00 -
Applications of Text Mining
00:00 -
Natural Language ToolKit Library
00:00 -
Text Extraction and Preprocessing: Tokenization
00:00 -
Text Extraction and Preprocessing: N-grams
00:00 -
Text Extraction and Preprocessing: Stop Word Removal
00:00 -
Text Extraction and Preprocessing: Stemming
00:00 -
Text Extraction and Preprocessing: Lemmatization
00:00 -
Text Extraction and Preprocessing: POS Tagging
00:00 -
Text Extraction and Preprocessing: Named Entity Recognition
00:00 -
NLP Process Workflow
00:00 -
Demo: Processing Brown Corpus
00:00 -
Wiki Corpus
00:00 -
Structuring Sentences: Syntax
00:00 -
Rendering Syntax Trees
00:00 -
Structuring Sentences: Chunking and Chunk Parsing
00:00 -
NP and VP Chunk and Parser
00:00 -
Structuring Sentences: Chinking
00:00 -
Context-Free Grammar (CFG)
00:00 -
Demo: Structuring Sentences
00:00 -
Practice: Airline Sentiment
00:00 -
Key Takeaways
00:00 -
Knowledge Check
00:00 -
FIFA World Cup
00:00
Lesson 12. Project Highlights
-
Project Highlights
00:00 -
Andrew McAfee | Building Mind-Machine Combinations: Welcome Technology as Your Colleague
00:00 -
Uber Fare Prediction
00:00 -
Amazon – Employee Access
00:00
Practice Projects
-
Practice Project
00:00 -
California Housing Price Prediction
00:00 -
Phishing Detector with LR
00:00